Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Y.-F. Liu,^a* H.-T. Xia,^a S.-P. Yang^a and D.-Q. Wang^b

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: liu222005@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.063 wR factor = 0.233 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*,*E*)-6,6'-Dimethoxy-2,2'-[*o*-phenylenebis-(nitrilomethylidyne)]diphenol

The title compound, $C_{22}H_{20}N_2O_4$, consists of two *o*-vanillin groups connected to a benzene ring *via* two azomethine linkages. The molecule structure is stabilized by intermolecular $C-H\cdots O$ and $C-H\cdots N$ interactions.

Received 19 November 2006 Accepted 19 November 2006

Comment

Azomethine compounds exhibit a wide variety of pharmacological activities including antitumour and antimicrobial activity (Modi *et al.*, 1970; Hodnett *et al.*, 1970). In the light of this, we have synthesized and characterized the title compound, (I) (Fig. 1).

In the crystal structure of (I), molecules are linked into sheets through $C-H\cdots O$ and $C-H\cdots N$ interactions (Table 1

The molecular structure of (I), showing the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

© 2006 International Union of Crystallography All rights reserved

05908 Liu et al. • C₂₂H₂₀N₂O₄

Figure 1

and Fig. 2). Neighboring sheets are connected by further C– H···O1 interactions (Fig. 3 and Table 1), thereby linking the molecules into a three-dimensional network involving an $R_2^2(12)$ ring (Bernstein *et al.*, 1995).

Experimental

A solution of *o*-vanillin (20 mmol) and benzene-1,2-diamine (10 mmol) in benzene (30 ml) was stirred for 6 h and then filtered and allowed to stand. Crystals of (I) precipitated from the solution.

Z = 4

Block, red

 $R_{\rm int} = 0.061$

 $\theta_{\rm max} = 25.0^\circ$

 $D_x = 1.318 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) K

 $0.65 \times 0.13 \times 0.09 \text{ mm}$

9506 measured reflections

3339 independent reflections

1566 reflections with $I > 2\sigma(I)$

Crystal data

$C_{22}H_{20}N_2O_4$
$M_r = 376.40$
Monoclinic, $P2_1/c$
a = 6.638 (2) Å
b = 16.838 (3) Å
c = 17.137 (3) Å
$\beta = 97.861 \ (3)^{\circ}$
V = 1897.3 (7) Å ³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.943, T_{\rm max} = 0.992$

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.058P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.063$ + 0.8316P]

 $wR(F^2) = 0.233$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.03 $(\Delta/\sigma)_{max} < 0.001$

 3339 reflections
 $\Delta\rho_{max} = 0.17$ e Å⁻³

 253 parameters
 $\Delta\rho_{min} = -0.22$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C9-H9\cdots O2^{i}$ $C8-H8A\cdots O1^{ii}$ $C6-H6\cdots N2^{iii}$ $C1-H1A\cdots O4^{iv}$	0.93	2.61	3.058 (5)	110
	0.96	2.69	3.413 (6)	133
	0.93	2.68	3.540 (5)	154
	0.93	2.70	3.528 (5)	149

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z + 1; (iii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

All H atoms were located in difference Fourier maps. H atoms bonded to C and O atoms were treated as riding atoms, with C–H distances of 0.93 (aryl), 0.96 (methyl) and 0.82 Å (hydroxy), and with $U_{\rm iso}({\rm H}) = 1.2$ (aryl) or 1.5 (methyl or hydroxy) times $U_{\rm eq}({\rm C},O)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

Figure 2

A part of the crystal struture of (I), showing the formation of sheets built from C-H···O and C-H···N interactions. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry code: (A) $x, \frac{1}{2} - y, -\frac{1}{2} + z$; (B) 1 + x, y, z; (C) $1 + x, \frac{1}{2} - y, -\frac{1}{2} + z$].

Figure 3

A different view of the crystal structure of (I), showing the formation of a three-dimensional network built from $C-H\cdots O$ hydrogen bonds. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds [symmetry code: (B) 1 + x, y, z; (D) -x, 1 - y, 1 - z; (E) 1 - x, 1 - y, 1 - z].

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Hodnett, E. M. & Dunn, J. W. (1970). J. Med. Chem. 4, 768-770.
- Modi, J. D., Sabnis, S. S. & Reliwala, C. V. (1970). J. Med. Chem. 5, 935–941. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). SADABS: Oniversity of Gottingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of
- Göttingen,Germany. Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Siemens. (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.